Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Heliyon ; 9(11): e21560, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37954306

RESUMEN

Cellulose nanofibrils from the banana rachis are a good alternative as packaging materials, food packaging, stabilizing agents, and functional food ingredients. To address the potential effects of ingested banana rachis cellulose nanofibrils (BR-CNFs), their toxicity in vitro and in vivo was evaluated using Caco-2 intestinal cells and mice, respectively. The results showed that BR-CNFs did not cause cytotoxic effects at the concentrations evaluated on Caco-2 cells. In addition to cytotoxicity tests, genotoxicity assays using comet assay indicated that Caco-2 cells showed no DNA damage at the concentrations of CNFs tested. Finally, acute in vivo cytotoxicity assays indicated that mice showed no sign of pathogenesis or lesions in the liver, kidney, or small intestine when treated with a single dose of BR-CNFs. Moreover, when the mice were treated daily for a month with BR-CNFs no hyperplasia or hypertrophy was observed in any of the organs evaluated. Additionally, biochemical parameters such as blood chemistry, creatinine, liver enzymes, and renal function showed that the BR-CNFs do not cause organ damage. Overall, this study shows that BR-CNFs are neither cytotoxic nor genotoxic. In conclusion, these studies are essential to guarantee the safety of this high value-added product in the food industry.

2.
Prev Vet Med ; 219: 106021, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37738753

RESUMEN

Visceral leishmaniasis (VL) is a disease caused by species of the Leishmania donovani complex that is mainly transmitted through the urban cycle involving dogs as the primary reservoir. In Colombia, the incidence of VL is increasing, along with the spread of potential vectors. This study aims to investigate the eco-epidemiological factors associated with Leishmania spp. infection in dogs from the Metropolitan Area of Bucaramanga (MAB), Santander, eastern Colombia, which is a region at risk for VL. We conducted molecular and serological surveillance of Leishmania spp. in 207 dogs from MAB to determine the epidemiological factors associated with infection. Subsequently, we carried out a molecular and serological analysis of phlebotomine and humans, respectively, in areas with a higher prevalence of infection, aiming to describe the main features associated with the transmission cycle. Out of the 207 dogs tested, 37 (17.8%, 95% CI = 12.6-23.1%) were positive for the presence of Leishmania antibodies by the IFAT test, and only 9 (4.3%, 95% CI = 1.55-7.15%) were positive for L. infantum by PCR. Multivariate analyses indicated that canine shelters and dogs with clinical signs commonly associated with canine VL had a higher prevalence of infection (P < 0.05). In the entomological survey, 69 blood-fed female phlebotomine of the genus Lutzomyia were captured in canine shelters, among them, 55% were identified as Lutzomyia camposi, 29% as Lu. ovallesi, 7% as Lu. dubitans, 6% as Lu. torvida, and 3% as Lu. cayennensis. The identified meal sources of the phlebotomine included human, pig, avian, cattle, and porcupine (Coendou quichua) blood. However, no phlebotomine positive for Leishmania spp. were detected by molecular analyses. Finally, 14 humans who had frequent contact with L. infantum-positive dogs were analyzed through rK39 test, but none tested was positive for IgG/IgM antibodies. The molecular and serological analyses indicate the circulation of L. infantum in dogs from MAB, with canine shelters having the highest prevalence of infection. The entomological survey of canine shelters showed a significant diversity of phlebotomine without potential vectors of L. infantum, suggesting the presence of infection in dogs from these areas could take place in other locations or through other transmission routes. The circulation of L. infantum in multiple dogs from MAB suggests a latent risk of zoonotic transmission of VL in these cities.

3.
Am Nat ; 201(2): 200-214, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36724468

RESUMEN

AbstractA subspecies of the yellow fever mosquito, Aedes aegypti, has recently evolved to specialize in biting and living alongside humans. It prefers human odor over the odor of nonhuman animals and breeds in human-provided artificial containers rather than the forest tree holes of its ancestors. Here, we report one way this human specialist has adapted to the distinct ecology of human environments. While eggs of the ancestral subspecies rarely hatch in pure water, those of the derived human specialist do so readily. We trace this novel behavior to a shift in how eggs respond to dissolved oxygen, low levels of which may signal food abundance. Moreover, we show that while tree holes are consistently low in dissolved oxygen, artificial containers often have much higher levels. There is thus a concordance between the hatching behavior of each subspecies and the aquatic habitat it uses in the wild. We find this behavioral variation is heritable, with both maternal and zygotic effects. The zygotic effect depends on dissolved oxygen concentration (i.e., a genotype-environment interaction, or G×E), pointing to potential changes in oxygen-sensitive circuits. Together, our results suggest that a shift in hatching response contributed to the pernicious success of this human-specialist mosquito and illustrate how animals may rapidly adapt to human-driven changes in the environment.


Asunto(s)
Aedes , Ecosistema , Humanos , Animales , Bosques , Árboles , Aedes/genética
4.
Ticks Tick Borne Dis ; 14(2): 102111, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574738

RESUMEN

Ehrlichia canis and Babesia vogeli are vector-borne pathogens that infect blood cells and produce the diseases Canine Monocytic Ehrlichiosis (CME) and Babesiosis in dogs. Considering the lack of studies on these pathogens in Colombia, this study aims to determine the molecular prevalence and genetic characterization of E. canis and Babesia spp., in dogs from the Metropolitan Area of Bucaramanga (MAB), Santander, a region with one of the greatest pet densities in Colombia. One hundred eighty-five dogs were surveyed and analyzed through molecular, clinical, and hematological approaches. The molecular detection of E. canis and Babesia spp., was performed by conventional PCR targeting the dsb and 18S rRNA genes, respectively. To identify genogroups, E. canis positive samples underwent a hemi-nested PCR of the trp36 gene, and the PCR products were subsequently sequenced. Molecular analyses showed a prevalence of 13% (24/185; CI 95%, 8.1 - 18.0%) and 1.09% (2/185; CI 95,% -0.43 - 2.6%) for E. canis and B. vogeli respectively, as well as the presence of the genogroups US (USA), BR (Brazil), and CR (Costa Rica), in 62.5, 16.6, and 16.6% of E. canis positive samples, respectively. Values of hematocrit, hemoglobin, platelets, erythrocytes, white blood cell (WBC) count, lymphocytes, and eosinophils showed significant differences between animals infected with the different genogroups of E. canis (p< 0.05). In contrast, hematocrit values, hemoglobin, platelets, red blood cells, and creatine kinase MB isoenzyme (CK-MB) were lower in B. vogeli positive animals. Statistical analysis indicated that E. canis infection was associated with specific socioeconomic sectors as well as with some household features (p< 0.05). In conclusion, our results present evidence of the circulation of multiple genogroups of E. canis in the MAB, which is associated with different geographical origins and clinical traits. Epidemiological analyses suggest a need to increase molecular surveillance and prevention campaigns especially in lower socioeconomic sectors.


Asunto(s)
Babesia , Babesiosis , Enfermedades de los Perros , Ehrlichiosis , Animales , Perros , Babesia/genética , Ehrlichia canis/genética , Colombia/epidemiología , Babesiosis/diagnóstico , Ehrlichiosis/epidemiología , Ehrlichiosis/veterinaria , Genotipo , Enfermedades de los Perros/diagnóstico
5.
Polymers (Basel) ; 14(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36501592

RESUMEN

Cellulose crystallinity can be described according to the crystal size and the crystallinity index (CI). In this research, using Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) methods, we studied the crystallinity of three different types of cellulose: banana rachis (BR), commercial cellulose (CS), and bacterial cellulose (BC). For each type of cellulose, we analyzed three different crystallization grades. These variations were obtained using three milling conditions: 6.5 h, 10 min, and unmilled (films). We developed a code in MATLAB software to perform deconvolution of the XRD data to estimate CI and full width at half-maximum (FWHM). For deconvolution, crystalline peaks were represented with Voigt functions, and a Fourier series fitted to the amorphous profile was used as the amorphous contribution, which allowed the contribution of the amorphous profile to be more effectively modeled. Comparisons based on the FTIR spectra and XRD results showed there were no compositional differences between the amorphous samples. However, changes associated with crystallinity were observed when the milling time was 10 min. The obtained CI (%) values show agreement with values reported in the literature and confirm the effectiveness of the method used in this work in predicting the crystallization aspects of cellulose samples.

6.
Insects ; 13(11)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36421964

RESUMEN

Chagas disease is a neglected vector-borne zoonosis caused by the parasite Trypanosoma cruzi that is primarily transmitted by insects of the subfamily Triatominae. Although control efforts targeting domestic infestations of Rhodnius prolixus have been largely successful, with several regions in Boyacá department certified free of T. cruzi transmission by intradomicile R. prolixus, novel native species are emerging, increasing the risk of disease. Triatoma dimidiata is the second most important species in Colombia, and conventional control methods seem to be less effective. In this study we evaluated the efficacy and usefulness of micro-encapsulated insecticide paints in laboratory conditions and its applicability in rural communities to avoid triatomine domiciliation. Laboratory conditions measured mortality at 6 months and 12 months, with an average mortality between 93-100% for T. dimidiata and 100% for R. prolixus. Evaluation of triatomine infestation in rural households was measured after one year, with an overall perception of effectiveness in reducing household domiciliation. Although triatomines were still spotted inside and around the homes, our findings demonstrate the ability of micro-encapsulated insecticide to prevent colonization inside the households when comparing infestation rates from previous years. Current control measures suggest insecticide spraying every six months, which implies great economic cost and logistical effort. Complementary triatomine control measures with insecticide spraying and micro-encapsulated insecticide paint would make public health efforts more efficient and reduce the frequency of treatment.

7.
Front Cell Infect Microbiol ; 12: 999082, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36329821

RESUMEN

Background: Rhodnius prolixus is considered the most relevant Trypanosoma cruzi vector in Colombia and Venezuela due it is responsible for domestic transmission in both countries. However, a wild population of this species is distributed in the eastern plains of the Orinoco region and Amazonia jungle, where its epidemiological importance has not been sufficiently elucidated. This study aimed to assess epidemiological parameters of T. cruzi transmission in the Department of Vichada, Colombia. Methods: We determined the characteristics of T. cruzi transmission using entomological studies in domestic and sylvatic ecotopes. We analyzed the T. cruzi infection in triatomine insects, identified blood meal sources, and conducted a serological determination of T. cruzi infection in scholar-aged children, domestic dogs, and wild hosts. Results: Fifty-four triatomine bugs, 40 T. maculata and 14 R. prolixus were collected in peridomestic and sylvatic ecotopes. Infected R. prolixus was observed in La Primavera, Santa Rosalia, and Cumaribo municipalities. All the T. maculata bugs were not infected. Serological analysis indicated that two of 3,425 children were T. cruzi positive. The seroprevalence in domestic dogs was 10,5% (49/465). Moreover, 22 synanthropic mammals were sampled, being Didelphis marsupialis the most common. TcI genotype was detected in seropositive dogs, R. prolixus, and D. marsupialis. Conclusion: The present work describes extra domestic R. prolixus and D. marsupialis in a sylvatic T. cruzi transmission cycle with transmission to humans and domestic dogs in Colombia's Vichada Department.


Asunto(s)
Enfermedad de Chagas , Rhodnius , Trypanosoma cruzi , Niño , Humanos , Perros , Animales , Anciano , Estudios Seroepidemiológicos , Colombia/epidemiología , Insectos Vectores , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/veterinaria , Trypanosoma cruzi/genética , Mamíferos
8.
Viruses ; 14(10)2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36298752

RESUMEN

INTRODUCTION: Aedes aegypti is the vector of several arboviruses such as dengue, Zika, and chikungunya. In 2015-16, Zika virus (ZIKV) had an outbreak in South America associated with prenatal microcephaly and Guillain-Barré syndrome. This mosquito's viral transmission is influenced by microbiota abundance and diversity and its interactions with the vector. The conditions of cocirculation of these three arboviruses, failure in vector control due to insecticide resistance, limitations in dengue management during the COVID-19 pandemic, and lack of effective treatment or vaccines make it necessary to identify changes in mosquito midgut bacterial composition and predict its functions through the infection. Its study is fundamental because it generates knowledge for surveillance of transmission and the risk of outbreaks of these diseases at the local level. METHODS: Midgut bacterial compositions of females of Colombian Ae. aegypti populations were analyzed using DADA2 Pipeline, and their functions were predicted with PICRUSt2 analysis. These analyses were done under the condition of natural ZIKV infection and resistance to lambda-cyhalothrin, alone and in combination. One-step RT-PCR determined the percentage of ZIKV-infected females. We also measured the susceptibility to the pyrethroid lambda-cyhalothrin and evaluated the presence of the V1016I mutation in the sodium channel gene. RESULTS: We found high ZIKV infection rates in Ae. aegypti females from Colombian rural municipalities with deficient water supply, such as Honda with 63.6%. In the face of natural infection with an arbovirus such as Zika, the diversity between an infective and non-infective form was significantly different. Bacteria associated with a state of infection with ZIKV and lambda-cyhalothrin resistance were detected, such as the genus Bacteroides, which was related to functions of pathogenicity, antimicrobial resistance, and bioremediation of insecticides. We hypothesize that it is a vehicle for virus entry, as it is in human intestinal infections. On the other hand, Bello, the only mosquito population classified as susceptible to lambda-cyhalothrin, was associated with bacteria related to mucin degradation functions in the intestine, belonging to the Lachnospiraceae family, with the genus Dorea being increased in ZIKV-infected females. The Serratia genus presented significantly decreased functions related to phenazine production, potentially associated with infection control, and control mechanism functions for host defense and quorum sensing. Additionally, Pseudomonas was the genus principally associated with functions of the degradation of insecticides related to tryptophan metabolism, ABC transporters with a two-component system, efflux pumps, and alginate synthesis. CONCLUSIONS: Microbiota composition may be modulated by ZIKV infection and insecticide resistance in Ae. aegypti Colombian populations. The condition of resistance to lambda-cyhalothrin could be inducing a phenome of dysbiosis in field Ae. aegypti affecting the transmission of arboviruses.


Asunto(s)
Aedes , Antiinfecciosos , Arbovirus , COVID-19 , Dengue , Insecticidas , Piretrinas , Infección por el Virus Zika , Virus Zika , Animales , Femenino , Humanos , Virus Zika/genética , Resistencia a los Insecticidas , Insecticidas/farmacología , Colombia/epidemiología , Pandemias , Triptófano , Mosquitos Vectores , Piretrinas/farmacología , Bacterias , Redes y Vías Metabólicas , Fenazinas , Mucinas , Transportadoras de Casetes de Unión a ATP , Antiinfecciosos/farmacología , Alginatos
9.
J Insect Sci ; 22(5)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36082679

RESUMEN

Insecticide resistance is a significant challenge facing the successful control of mosquito vectors globally. Bioassays are currently the only method for phenotyping resistance. They require large numbers of mosquitoes for testing, the availability of a susceptible comparator strain, and often insectary facilities. This study aimed to trial the novel use of rapid evaporative ionization mass spectrometry (REIMS) for the identification of insecticide resistance in mosquitoes. No sample preparation is required for REIMS and analysis can be rapidly conducted within hours. Temephos resistant Aedes aegypti (Linnaeus) larvae from Cúcuta, Colombia and temephos susceptible larvae from two origins (Bello, Colombia, and the lab reference strain New Orleans) were analyzed using REIMS. We tested the ability of REIMS to differentiate three relevant variants: population source, lab versus field origin, and response to insecticide. The classification of these data was undertaken using linear discriminant analysis (LDA) and random forest. Classification models built using REIMS data were able to differentiate between Ae. aegypti larvae from different populations with 82% (±0.01) accuracy, between mosquitoes of field and lab origin with 89% (±0.01) accuracy and between susceptible and resistant larvae with 85% (±0.01) accuracy. LDA classifiers had higher efficiency than random forest with this data set. The high accuracy observed here identifies REIMS as a potential new tool for rapid identification of resistance in mosquitoes. We argue that REIMS and similar modern phenotyping alternatives should complement existing insecticide resistance management tools.


Asunto(s)
Aedes , Insecticidas , Animales , Resistencia a los Insecticidas , Insecticidas/farmacología , Larva , Espectrometría de Masas , Mosquitos Vectores , Temefós
10.
Insects ; 13(6)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35735873

RESUMEN

Dengue, Zika, and chikungunya are arboviral diseases for which there are no effective therapies or vaccines. The only way to avoid their transmission is by controlling the vector Aedes aegypti, but insecticide resistance limits this strategy. To generate relevant information for surveillance and control mechanisms, we determined life cycle parameters, including longevity, fecundity, and mortality, of Colombian Ae. aegypti populations from four different geographical regions: Neiva, Bello, Itagüí, and Riohacha. When reared at 28 °C, Bello had the shortest development time, and Riohacha had the longest. Each mosquito population had its own characteristic fecundity pattern during four gonotrophic cycles. The survival curves of each population were significantly different, with Riohacha having the longest survival in both males and females and Bello the shortest. High mortality was observed in mosquitoes from Neiva in the egg stage and for Bello in the pupae stage. Finally, when mosquitoes from Neiva and Bello were reared at 35 °C, development times and mortality were severely affected. In conclusion, each population has a unique development pattern with an innate trace in their biological characteristics that confers vulnerability in specific stages of development.

11.
J Med Entomol ; 59(1): 192-212, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34718656

RESUMEN

Arboviruses including dengue, Zika, and chikungunya are amongst the most significant public health concerns worldwide. Arbovirus control relies on the use of insecticides to control the vector mosquito Aedes aegypti (Linnaeus), the success of which is threatened by widespread insecticide resistance. The work presented here profiled the gene expression of Ae. aegypti larvae from field populations of Ae. aegypti with differential susceptibility to temephos originating from two Colombian urban locations, Bello and Cúcuta, previously reported to have distinctive disease incidence, socioeconomics, and climate. We demonstrated that an exclusive field-to-lab (Ae. aegypti strain New Orleans) comparison generates an over estimation of differential gene expression (DGE) and that the inclusion of a geographically relevant field control yields a more discrete, and likely, more specific set of genes. The composition of the obtained DGE profiles is varied, with commonly reported resistance associated genes including detoxifying enzymes having only a small representation. We identify cuticle biosynthesis, ion exchange homeostasis, an extensive number of long noncoding RNAs, and chromatin modelling among the differentially expressed genes in field resistant Ae. aegypti larvae. It was also shown that temephos resistant larvae undertake further gene expression responses when temporarily exposed to temephos. The results from the sampling triangulation approach here contribute a discrete DGE profiling with reduced noise that permitted the observation of a greater gene diversity, increasing the number of potential targets for the control of insecticide resistant mosquitoes and widening our knowledge base on the complex phenotypic network of the Ae. aegypti response to insecticides.


Asunto(s)
Aedes , Resistencia a los Insecticidas/genética , Temefós/farmacología , Aedes/efectos de los fármacos , Aedes/genética , Animales , Infecciones por Arbovirus/transmisión , Vectores de Enfermedades , Genes de Insecto , Variación Genética , Control de Insectos , Larva , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/genética , RNA-Seq
12.
PLoS Negl Trop Dis ; 15(12): e0010001, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34905537

RESUMEN

INTRODUCTION: In Colombia, organochloride, organophosphate, carbamate, and pyrethroid insecticides are broadly used to control Aedes aegypti populations. However, Colombian mosquito populations have shown variability in their susceptibility profiles to these insecticides, with some expressing high resistance levels. MATERIALS AND METHODS: In this study, we analyzed the susceptibility status of ten Colombian field populations of Ae. aegypti to two pyrethroids; permethrin (type-I pyrethroid) and lambda-cyhalothrin (type-II pyrethroid). In addition, we evaluated if mosquitoes pressured with increasing lambda-cyhalothrin concentrations during some filial generations exhibited altered allelic frequency of these kdr mutations and the activity levels of some metabolic enzymes. RESULTS: Mosquitoes from all field populations showed resistance to lambda-cyhalothrin and permethrin. We found that resistance profiles could only be partially explained by kdr mutations and altered enzymatic activities such as esterases and mixed-function oxidases, indicating that other yet unknown mechanisms could be involved. The molecular and biochemical analyses of the most pyrethroid-resistant mosquito population (Acacías) indicated that kdr mutations and altered metabolic enzyme activity are involved in the resistance phenotype expression. CONCLUSIONS: In this context, we propose genetic surveillance of the mosquito populations to monitor the emergence of resistance as an excellent initiative to improve mosquito-borne disease control measures.


Asunto(s)
Aedes/efectos de los fármacos , Aedes/genética , Resistencia a los Insecticidas , Insecticidas/farmacología , Animales , Colombia , Proteínas de Insectos/genética , Mutación , Nitrilos/farmacología , Permetrina/farmacología , Piretrinas/farmacología
13.
Parasite Epidemiol Control ; 15: e00226, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34646953

RESUMEN

The increase in outbreaks of Chagas disease in Colombia has required the strengthening of entomological surveillance with the active participation of the affected communities and the monitoring of the natural infection of the collected kissing bugs recollected inside households. The natural infection with Trypanosoma cruzi of triatomines collected by inhabitants of some municipalities of the department of Antioquia in 2019 was evaluated by molecular methods. This study described the intradomiciliary presence of Panstrongylus geniculatus (Latreille, 1811) in four cities of Antioquia: Barbosa, Liborina, Ituango, and Puerto Triunfo. This vector is reported for the first time in the municipalities Liborina, Barbosa, and Ituango. Furthermore, the natural infection with T. cruzi , DTUI, was reported in Barbosa and Liborina. The epidemiological implications of these findings are analyzed within the context of recent reports of outbreaks of Chagas disease in Antioquia.

14.
Mem Inst Oswaldo Cruz ; 116: e200441, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34259736

RESUMEN

BACKGROUND: A previous phylogeographic study revealed two Aedes aegypti African-related mitochondrial lineages distributed in Colombian's cities with different eco-epidemiologic characteristics with regard to dengue virus (DENV). It has been proposed these lineages might indicate independent invasion sources. OBJECTIVES: Assessing to Colombian population structure and to support evidence of its probable source origin. METHODS: We analysed a total of 267 individuals from cities of Bello, Riohacha and Villavicencio, which 241 were related to the West and East African mitochondrial lineages (termed here as WAL and EAL, respectively). Eight polymorphic microsatellite loci were analysed aiming population structure. FINDINGS: Results indicate substantial gene flow among distant and low-connected cities composing a panmictic population with incipient local differentiation of Ae. aegypti is placed in Colombia. Likewise, genetic evidence indicates no significant differences among individuals related to WAL and EAL is placed. MAIN CONCLUSIONS: Minimal genetic differentiation in low-connected Ae. aegypti populations of Colombia, and lack concordance between mitochondrial and nuclear genealogies suggest that Colombian Ae. aegypti shared a common demographic history. Under this scenario, we suggest current Ae. aegypti population structure reflects a single origin instead of contemporary migration, which founding populations have a single source from a mitochondrial polymorphic African ancient.


Asunto(s)
Aedes , Dengue , Aedes/genética , Animales , Colombia , Variación Genética/genética , Humanos , Filogeografía
15.
PLoS Negl Trop Dis ; 15(7): e0009574, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34280203

RESUMEN

INTRODUCTION: Updating the distribution and natural infection status of triatomine bugs is critical for planning, prioritizing, and implementing strategies to control Chagas disease (CD), especially after vector reduction programs. After carrying out a control program, the Department of Boyaca contains the highest number of Colombian municipalities certified by PAHO to be free of intradomiciliary transmission of Trypanosoma cruzi by Rhodnius prolixus. The present work describes the spatial distribution, natural infection (NI), and molecular characterization of T. cruzi in synanthropic triatomines from the Department of Boyaca in 2017 and 2018. MATERIALS AND METHODS: An entomological survey was conducted in 52 municipalities in Boyaca known to have had previous infestations of triatomine bugs. Insects were collected through active searches carried out by technical personnel from the Secretary of Health and community members using Triatomine Collection Stations (PITs-acronym in Spanish). For evaluation of natural infection, triatomines were identified morphologically and grouped in pools of one to five individuals of the same species collected in the same household. DNA derived from the feces of each pool of insects was analyzed by PCR for the presence of T. cruzi using primers flanking the satellite DNA of the parasite. SL-IR primers were used to differentiate TCI from the other DTUs and to identify different genotypes. The distribution of the collected triatomines was analyzed to determine any vector hotspots using spatial recreation. RESULTS: A total of 670 triatomine bugs was collected, belonging to five species: Triatoma dimidiata (73.2%), Triatoma venosa (16.7%), Panstrongylus geniculatus (5.7%), Rhodnius prolixus (4.4%), and Panstrongylus rufotuberculatus (0.4%), from 29 of the 52 municipalities. In total, 71.6% of the bugs were collected within houses (intradomiciliary) and the rest around the houses (peridomiciliary). Triatoma dimidiata was the most widely distributed species and had the highest natural infection index (37.8%), followed by T. venosa and P. geniculatus. TcI was the only DTU found, with the TcI Dom genotype identified in 80% of positive samples and TcI sylvatic in the other insects. Spatial analysis showed clusters of T. dimidiata and T. venosa in the northeast and southwest regions of Boyaca. CONCLUSIONS: After some municipalities were certified free of natural transmission within houses (intradomiciliary transmission) of T. cruzi by R. prolixus, T. dimidiata has become the most prevalent vector present, and represents a significant risk of resurgent CD transmission. However, T. venosa, P. geniculatus, and P. rufotuberculatus also contribute to the increased risk of transmission. The presence of residual R. prolixus may undo the successes achieved through vector elimination programs. The molecular and spatial analysis used here allows us to identify areas with an ongoing threat of parasite transmission and improve entomological surveillance strategies.


Asunto(s)
Distribución Animal , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/transmisión , Insectos Vectores/parasitología , Reduviidae/parasitología , Trypanosoma cruzi/genética , Animales , Colombia/epidemiología , Genotipo , Humanos , Reduviidae/fisiología
16.
Prev Vet Med ; 193: 105414, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34175568

RESUMEN

In South America, Colombia is the third-largest livestock producer with approximately 28.8 million cattle, of which Colombian Creole cattle represent around 1% of the livestock population. Animal Trypanosomiasis (AT) is one of the most critical problems in the livestock industry, reducing its production by about 30 %. Considering the paucity of information to understand the epidemiological features of AT in Colombian Creole cattle, the present study reports the molecular prevalence and clinical traits associated with the infection of Trypanosoma spp. in three Colombian Creole breeds. From 2019 to 2020, cross-sectional surveillance in farms of central and west of Colombia was designed to evaluate the mentioned characteristics in Casanareño, Chino Santandereano, and Sanmartinero Creole breeds. Molecular analysis showed an AT prevalence of 60.2 % (95 % CI = 54.2 % - 66.2 %). The Chino Santandereano population presented the highest value (Trypanosoma spp., 75.2 %, T. theileri 59.6 % and T. evansi 15.6 %), followed by Casanareño (Trypanosoma spp., 65.3 %, T. theileri 38.6 %, T. evansi 24.0 %, and T. vivax 5.3 %) and Sanmartinero (Trypanosoma spp., 33.3 %, T. theileri 24.0 % and T. evansi 9.3 %). Features such as breeds, age, and feeding system were significantly associated with AT prevalence (P < 0.05). Additionally, a low level of serum total proteins was observed during T. evansi infection in Sanmartinero (P < 0.05). To our knowledge, this is the first cross-sectional survey that evaluates using molecular methods the infection of Trypanosoma spp. in Colombian Creole breeds, showing significant variations in the prevalence and clinical signs associated with the infection. These results suggest different degrees of trypanotolerance in these breeds, as well as a possible effect of environmental variables on the prevalence and clinical characteristics associated with the infection. The epidemiological and economic implications of these findings are discussed here.


Asunto(s)
Enfermedades de los Bovinos , Trypanosoma , Tripanosomiasis , Animales , Cruzamiento , Bovinos/parasitología , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/parasitología , Colombia/epidemiología , Estudios Transversales , Ganado , Trypanosoma/genética , Trypanosoma/aislamiento & purificación , Tripanosomiasis/epidemiología , Tripanosomiasis/veterinaria
17.
Acta biol. colomb ; 26(1): 127-130, ene.-abr. 2021. tab, graf
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1152676

RESUMEN

RESUMEN La búsqueda continua de triatominos forma parte de los programas de vigilancia de la enfermedad de Chagas en zonas con características ecológicas apropiadas para la presencia del vector, permitiendo priorizar y definir las acciones de intervención. El objetivo del presente trabajo fue determinar la presencia y estado de infección de triatominos en viviendas del municipio de Inírida (Guainía). El estudio se realizó entre 2018 y 2019 mediante vigilancia comunitaria y búsqueda activa. Los vectores se identificaron y evaluaron por PCR. Se recolectaron cinco triatominos (un Panstrongylus lignarius y cuatro P. geniculatus). Se evidenció la infección natural en ambas especies. La genotipificación mostró la presencia de TcI Dom. Se actualiza así la presencia e infección P. lignarius, así como la infección de P. geniculatus para Inírida.


ABSTRACT The continuous search and characterization of triatomine bugs is essential for Chagas disease surveillance programs in areas with ideal ecological conditions for the distribution of these vectors. These activities are necessary to define and optimize intervention strategies. The objective of this work was to determine the presence of triatomine and its infection status in households located in the municipality of Inírida (Guainía). Between 2018 and 2019, we developed a community participation strategy where an active search was essential for the capturing of triatomine bugs. The collected bugs were evaluated by PCR allowing to identify one as Panstrongylus lignarius and four as P. geniculatus. Genotyping showed the presence of TcI Dom confirming infection in both species. Thus, this study presents an update of the infection status of P. geniculatus and the presence of infected P. lignarius in the Guainía region in Colombia.

18.
Microorganisms ; 10(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35056459

RESUMEN

Chagas disease, Trypanosoma cruzi infection, is an insidious cause of heart failure in Latin America. Early diagnosis and treatment are critical to prevent irreversible myocardial damage that progressively accumulates over decades. Several structural barriers account for the less than 1% of cases in Colombia being treated, including poor physician knowledge, especially considering that some regions are considered non-endemic. The two cases reported here represent an emerging epidemiologic scenario associated with pediatric Chagas disease. Both cases are suspected oral transmitted parasitic infection in a geographic region of Colombia (Andean region of Antioquia) where no previous oral transmission of Chagas disease had been reported. Their clinical histories and course of disease are presented here to increase physician awareness of the epidemiologic risk factors and clinical manifestations associated with pediatric oral Chagas disease in Antioquia department, Colombia.

19.
Mem. Inst. Oswaldo Cruz ; 116: e200441, 2021. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1279457

RESUMEN

BACKGROUND A previous phylogeographic study revealed two Aedes aegypti African-related mitochondrial lineages distributed in Colombian's cities with different eco-epidemiologic characteristics with regard to dengue virus (DENV). It has been proposed these lineages might indicate independent invasion sources. OBJECTIVES Assessing to Colombian population structure and to support evidence of its probable source origin. METHODS We analysed a total of 267 individuals from cities of Bello, Riohacha and Villavicencio, which 241 were related to the West and East African mitochondrial lineages (termed here as WAL and EAL, respectively). Eight polymorphic microsatellite loci were analysed aiming population structure. FINDINGS Results indicate substantial gene flow among distant and low-connected cities composing a panmictic population with incipient local differentiation of Ae. aegypti is placed in Colombia. Likewise, genetic evidence indicates no significant differences among individuals related to WAL and EAL is placed. MAIN CONCLUSIONS Minimal genetic differentiation in low-connected Ae. aegypti populations of Colombia, and lack concordance between mitochondrial and nuclear genealogies suggest that Colombian Ae. aegypti shared a common demographic history. Under this scenario, we suggest current Ae. aegypti population structure reflects a single origin instead of contemporary migration, which founding populations have a single source from a mitochondrial polymorphic African ancient.


Asunto(s)
Humanos , Animales , Aedes/genética , Dengue , Variación Genética/genética , Colombia , Filogeografía
20.
Sci Rep ; 10(1): 16395, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33009443

RESUMEN

Chagas disease is considered the most important parasitic disease in Latin America. The protozoan agent, Trypanosoma cruzi, comprises six genetic lineages, TcI-TcVI. Genotyping to link lineage(s) to severity of cardiomyopathy and gastrointestinal pathology is impeded by the sequestration and replication of T. cruzi in host tissues. We describe serology specific for TcI, the predominant lineage north of the Amazon, based on expression of recombinant trypomastigote small surface antigen (gTSSA-I) in the eukaryote Leishmania tarentolae, to allow realistic glycosylation and structure of the antigen. Sera from TcI-endemic regions recognised gTSSA-I (74/146; 50.7%), with no cross reaction with common components of gTSSA-II/V/VI recombinant antigen. Antigenicity was abolished by chemical (periodate) oxidation of gTSSA-I glycosylation but retained after heat-denaturation of conformation. Conversely, non-specific recognition of gTSSA-I by non-endemic malaria sera was abolished by heat-denaturation. TcI-specific serology facilitates investigation between lineage and diverse clinical presentations. Glycosylation cannot be ignored in the search for immunogenic antigens.


Asunto(s)
Antígenos de Protozoos/inmunología , Enfermedad de Chagas/inmunología , Sueros Inmunes/inmunología , Trypanosoma cruzi/inmunología , Secuencia de Aminoácidos , Antígenos de Superficie/inmunología , Enfermedad de Chagas/parasitología , Genotipo , Glicosilación , Humanos , América Latina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...